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Analysis of Q cooperative stereo algorithm

by

D. Marr, G. Palm** and T. Poggio**

SUMNARY: Marr § Poggio (1976) recently described a cooperative
algorithm that solves the correspondence problem for stereopsis. This
article uses a probabjlistic technique to analyze the convergence of
that algorithm, and derives the conditions governing the stability of
the solution state. The actual results of applying the algorithm to
random-dot stereograms are compared with the probabilistic analysis. A
satisfactory mathematical analysis of the asymptotic behaviour of the
algorithm is possible for a suitable choice of the parameter values and
loading rules, and again the actual performance of the algorithm under
these conditions is compared with the theoretical predictions.

Finally, some problems raised by the analysis of this type of
"cooperative" algorithm are briefly discussed.

**\lax-Planck-Institut fur Biologische Kybernetik, 74 Tubingen 1,
Spemannstrasse 38, Germany.
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1 Introduction

The extraction of stereo-disparity information from two images
depends upon establishing a correspondence between them. In a recent
article, Marr § Poggio (1976) analyzed the nature of the correspondence
computation and derived a cooperative algorithm that implements it.
Although several examples were given of the performance of the
algorithm on random-dot stereograms (Marr § Poggio 1976, figures 3-0),
space did not permit a thorough analysis of the fixed points of the
algorithm, or of its convergence. In this article, we shall examine

these issues in detail.

1.1 Computational structure of the correspondence problem

Marr & Poggio (1970) argued that the stereo problem may be reduced
to that of matching‘two primitive descriptions, one from each eye.
They showed that the central problem is to find a correspondence
between the left and right descriptions, that satisfies the two rules
(p. 284 and Marr, 1974):

(R1) Uniqueness: Each item from each image may be assigned at most one

disparity.

(R2) Continuity: Disparity varies smoothly almost everywhere.
By constructing an explicit geometrical representation of these two

rules (figure 1c), they were able to derive a cooperative algorithm
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1. Figure 1a shows the explicit structure of the two rules Al and A2
for the case of a one-dimensional image, and it also represents the
structure of a network for implementing the algorithm described by
equation 1.1.1. Solid lines represent "inhibitory" interactions, and
dotted lines represent “excitatory" ones. 1b gives the local structure
at each node of the network 1a. This algorithm may be extended to two-
dimensional images, in which case each node in the corresponding
network has the local structure shown in 1c. (Marr & Pogglo 1976 figure

2).
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that implements them. [f one thinks of figure la as a network, with a
cell at each node, the uniqueness rule R1 means that only one cell is
"on" along each vertical or horizontal line (the line of sight from the
left and right eyes); and the continuity rule R2 implies that solutions
(its asymptotic states) tend to spread along the dotted diagonals
(lines of constant disparity).

In order to implement these rules, each cell sends "inhibitory"
connections to all other cells along the same vertical and horizontal
lines, and excitatory connections along its diagonal. This gives the
local network geometry shown in figure ib. For a two-dimensional
image, the only change needed is to make the excitatory neighborhood
twvo-dimensjonal, which gives the local geometry shown in figure lc.

Let Cy ,,q denote the state at time t of the cell corresponding to
coordinate (x, y) on the left retina, matching position (x+d, y) on the
right retina. Let S(xpd) denote its excitatory neighborhood (the disc
in figure 1c), and O(xyd) iis inhibitory neighborhood (the horizontal
and vertical lines in figure ic). The algorithm implemented by the
network may be written (Marr § Poggio 1976, equation 2)

(t+1) (t) : (t)
1.1.4 cx.y;d °| 2 cx'.y':d' ¢ 2 cx' y':d' X,y:d

]
x',y‘.d‘cS(x.y.d) X'.y'.d'EO(X.y:d)
where ¢ is a threshold function that takes values 0 or 1, and ¢ is an
"inhibition" constant.
This article is concerned with the properties of the algorithms
defined by equation 1.1.1 or, equivalently, with the behavior of the
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corresponding network (fig. 1). The two inputs to the algorithm or
network, from which the initial state of the network is determined, are
usually two matrices whose entries consist of 0's and 1's. The second
matrix is constructed from the first by x-translations of regions of
it. As we shall discuss later the algorithm defined by equation 1.1.1
has some analogies with games like "life".

The plan of the paper is as follows: Section 2 describes the
loading rules, which determine the 1nitia1 state from the input
stereograms, and also defines the algorithm precisely. The relations
between the fixed points of the algorithm and the states that satisfy
the two conditions Rf and R2 are then discussed (section 3). A
probabilistic approach to the convergence of the algorithm is outlined
in section 4, Actual computer simulations of the algorithm are
compared with the probabilistic analysis, and the range of parameter
values that yield a "nice" convergence is discussed. Some special
situations are also analyzed (section 5). A suitable (and restrictive)
choice of the parameter values in eq. 1.1.1 allows a satisfactory
mathematical analysis of the algorithm: section 6 is devoted to such
an approach. Finally, we briefly discuss the mathematical problems

raised by the analysis of this type of "cooperative" algorithm.
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2 The algorithm

2.1 Loading conditions

Let the positions on the left and right retinas be denoted by Le.y
and R, , respectively. These arrays take the values 0, indicating the
absence of a feature, or 1, indicating the presence. The initial

condition of the network, for stereogram L, R is given by

2.1.1 C

&

[o]
x,y:d Lx.y : "x0d.l

within the appropriate range d of disparity.

2.2 The algorithm

The relation between states at times t and t+l, is given by the
recurrence relation eq 1.1.1, where ¢ is a sigmoid function in general,
and here is taken to be the threshold function
2.2.1 o(u) = 1 ifuze,

- 0 otherwise.

¢ is a constant, known as the "inhibition constant". The number of
disparity layers d we shall denote by D, and we shall let N be the
diameter of the excitatory neighborhood S(x,y.d). In the example shown
in figure 2, N -~ 5, and the total number of cells in an excitatory

neighborhood is 13. The number less the cell itself is 12, which we

shall denote by E. The number of cells in an inhibitory neighborhood
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2. The excitatory neighborhood (figure 1c) used in our implementation
has a diameter of S, and contains 13 cells. The central cell, marked
by a square, receives at most 12 excitatory inputs from its neighbours.
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A _

of a given cell is 20 - 2, excluding the cell itself.

2.3 Parameter values and some facts

» The parameter values chosen for our original algorlthn1 (Marr &
Poggio, 1976) were £ = 12, D =7, ¢ = 2, § = 4, with the excitatory
neighborhood shown in fig. 2. Among other constraints, these parameter

values were chosen to satisfy the following conditions:

2.3.1 in the absence of inhibition and of a contribution from the tern
co, straight line borders should fill in as shown in fig. 3a. This is

true when @ < 4.

2.3.2 straight line borders between two "filled-in"™ planes at

different disparities should not grow. This requires that 4 - 2¢ < §.

2.3.3 with the particular values chosen:

-- a pattern of five connected points is the smallest configuration
that can survive (see fig. 3b). It will not grow unless one other
point is added (e.g. at P in fig. 3b).

-- the sharpest convexity capable of surviving against one inhibition,
with the help of a contribution from ¢’ is a right-angle., Fig. 3¢
shows that the condition is 6 - ¢ 2 0.

-- a convex or flat border cannot grow against one inhibition; it can
grow only into scattered active cells.

-- the least concave patterns capable of growing under two inhibitions
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3. The total excitatory contribution for various configurations of
"on" cells. The excitatory neighborhood (figure 2) is shown with open
circles, except for the central cell which is indicated by a square
because it makes no contribution to the total excitation. With a
threshold of 4.0; 3a shows that a flat border will grow in the absence
of inhibition, 3b exhibits the smallest stable configuration, 3c the
sharpest stable convexity, and 3d § e show concavities that fill in.
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are shown in figs. 3d § e. They fill in by one or two cells and then

are no longer conc ve enough to grow under two inhibitions.

3 Invariant states and the matching rules

The matching rules for stereopsis that were given in the

introduction take the following form for the algorithm discussed here:

(1) Uniqueness: Each item from each image may be assigned at most one

disparity value.

(2) Continuity: Disparity does not change almost everywhere.
Comment: R2 has now taken a slightly different form. This is because
disparity takes only discrete value in this algorithm. Images
containing smoothly varying disparities may be handled by a modified

version of the algorithm, which will be discussed in section 5.

We now show_that the states in which these two rules are obeyed

are for all practical purposes invariaent, i.e. they are fixed points of

eq. 1.1.1, and once achieved, do not change in subsequent iterations.

3.1 Configurations that satisfy the matching rules are invariant

The continuity and uniqueness conditions mean that, for each value




4. The solid lines indicate solution planes (cf figure 1a). Lines of
sight PQp, PQp intersect solution planes at only one point P, except
possibly near the (rare) disparity boundaries like A. Thus
configurations that obey rule Rl are invariant.
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of y, a cross-section of the network has the appearance shown in figure
4 (the continuity condition also requires that the active segment has
some extension in the y direction). That is, the "on" cells in the
network form extended segments like that shown as AB (continuity), and
most lines of sight (e.g. PQ), PQR) intersect only one of these
extended segments (uniqueness). Some lines of sight (e.g. to D) may
intersect two planes: this occurs only at the (rare) boundaries at
which disparity changes. The physical situation is that one surface is
obscuring the other.

We show now that these configurations are invariant if the

parameter values are appropriate.
(1) Interior points like P are certainly invariant if
t)

38.1.1 2. éx',y',d 2 !

x',y',d"' e S(x,y,d)
if P is interior in both x and p.
(11> Eq. 8.1.1 implies that boundary points like A (fig. 4) on a
straight boundary (in the x-y plane) will not grow into the interior of
an exlisting segment at another disparity provided that

3.1.2 E/2+1 - X ¢ @

Concave pieces of boundaries can in principle grow, but not much for




e )

S. The two possible stable edges for flat boundaries. Depending on
the initial conditions, edges can occur that are defined by the line
where cells begin receiving one (A) or two (B) inhibitions from the
other surface.
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two reasons. Firgtly, boundaries cannot be everywhere concave, and
secondly, with our particular excitatory neighborhood and parameter
values (see figs. 3d § e) the amount a concave border can fill in is
limited to at most two elements. Fig. 5 shows the two possible stable

edges for flat boundaries. E

3.2 Not all invariant configurations satisfy the matching rules

Strictly speaking, the converse result to that of the last section
is not true. A counter-example to the uniqueness condition that is
stable with our parameters appears in figure 6. Interior points of a

plane, wholly surrounded by other points in the same sheet, can survive

inhibition from two other cells and so can boundary points where the
boundary is straight. In figure 6b, points of these two types are the
only ones that occur. A counter-example to the continuity condition

appears in figure 7, and it is left as an exercise to show that this

pattern is invariant. In practice, neither of these configurations can é
actually develop from a random-dot stereogram.

When the input consists of two stereograms portraying a single
surface, the probabilistic analysis of the next section shows that with
high probability, the solutions will in fact obey the uniqueness
condition.

If the input stereograms portray a transparent surface in front of
another surface, the algorithm with our parameter values will usually 3
fail to represent the input accurately, tending instead to develop a 3

solution that obeys the two conditions and consists of a mosaic of

T - - -
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6. A stable geometrical configuration that violates the uniqueness
condition (6a). The central square consists of two planes, one at
disparity 2 and one at disparity 0. This configuration is a stable
state of the algorithm, in the sense that if it is loaded directly into
the network, an invariant configuration is quickly reached in which
both planes are represented. Figure 6b demonstrates this. The
stereogram is marked Left and Right, and S {terations of the algorithm
are shown. If the network is loaded in the usual way, however, the
algorithm develops a solution that is a mosaic of patches from the two
levels (6¢).
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patches from the two levels (fig. 6¢c). With the parameters we chose,
there seems to be no convenient and precise definition of the stability
of configurations that forces the uniqueness and continuity of
solutions. For instance, even it one requires in addition to
invariance some kind of spatial stabilityz. the counter-example of fig.
6 cannot be avoided, although a reasonable "spatial stability"
1 condition would exclude the counter-example of fig. 7.
Ei If one could exclude significant overlaps between surfaces lying
| at different disparities, it appears that one can derive the continuity
conditions for invariant configurations. The argument is based here on
the notion of a hole3, and shows by straightforward geometry that holes
are not invariant.

In one dimension (in which the network consists only of the part
shown in fig. 1a) the problem of this section becomes easier.
Apparently, the only way of reducing the 2-dimensional problem to a

satisfactory state is by changing the parameter values (see section 0).

4 Probabilistioc analysis of the algorithm

We have been unable to obtain general results about the
convergence of this type of algorithm. Standard approaches -- e.g.
Liapunov-type methods and the usual fixed point theorems -- apparently
fail in this situation for reasons that we shall mention in the

discussion.
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7. A stable geometrical configuration that violates the continuity
condition. At each of two disparity values, the "“on" cells foram a
checkerboard pattern, but they are arranged in such a way that neither
level can fill in, because of inhibition from the other.
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The probabilistic analysis given here, although not completely
satisfactory, nevertheless provides useful information about the

algorithm's convergence for random-dot stereograms. Strictly speaking

its application is restricted to inputs with a random structure.

The idea behind our analysis is that the cells in the network can
be divided into populations on which the excitatory and inhibitory
inferences are statistically homogeneous (cf Marr 1971). Our analysis
is very specific to the algorithm of eq. 1.1.1, because the way in
which the cells are divided into populations depends critically on the
geometry of the algorithm and on our a priori knowledge of its

invariant state.

4.1 Assumptions and notation
The algorithm has the structure shown in fig. 1 and the network is
loaded from the input as specified by eq. 2.1.1. We shall assume that

the inputs have the following properties.
4.1.1 the 1's in each image occur randomly with probability p», and the
autocorrelation of each input sequence (for any given y) is a Kronecker

s.

4.1.2 the input admits a unique solution surface that is large enough

to neglect boundary effects.
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Condition 4.1.2 means that the left input is equal to the right one, i
mocdulo x-translation. Condition 4.1.1 implies that in the initial

state of the network C, the density of 1's on the solution layer equals

v, and elsewhere it is »2. We subdivide the cells into five
populations, by classifying them in two ways:

(1) according to whether or not they are a "on" in the initial state
C”, and
(ii) according to the number of active inputs from the images.

We draw both the populations 0 and 1 from cells that lie on the
solution layer; population 0 is defined to receive no active inputs
from the image, and population 1 receives two. Notice that there are
no cells in the solution layer that receive exactly one active input.

The other three populations that we define refer to cells that lie
off the solution layer; population 11 receives two active inputs from
the image, population 10 receives one, population 00 receives none.
The five populations (0, 1, 11, 10, 00) are exclusive and exhaustive.

We denote by pp(t), py(t), etc. the probability that a cell in the
respective population is "on" at time t. The goal of our analysis is
to express the values of the p,(t) in terms of p”(t-l) for the various
populations w. This allows us to examine the convergence numerically,
and we say that a solution is achieved at time T when

pp(t) = py(t) = I, and

Poo(t) = pge(t) = pyga(t) = 0, for every t 2 T.

The critical assumption here is that the quantity Py (1) completely

describes the structure of active cells in the respective population
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w. This assumption is true for the initial iteration and only
approximate thereafter. We shall discuss this point at the end of the

section.

4.2 Formulae

The state of a cell (x,y.d) at time (t+1) depends upon the number
of active cells in its excitatory S(x,y.d) and inhibitory 0(x.y.d)
neighborhoods at time t.

If we denote the populations to which the cell belongs by », (w

running through the five populations 0, 1, 00, 11, 0i), let us define:

ex(r) to be the probability that exactly r cells are "on" in the

excitatory neighborhood S(x,y.d) at time t and

i (r) to be the probability that exactly r cells are "on" in the

inhibitory neighborhood 0(x,y,d) at time t.

It 1s convenient to introduce some further quantities:

qg(t) is the probability that a given cell on the "solution" plane

is active at time t.

q,(t) is the probability that a given cell elsewhere in the network

is active.
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T,

SEASESLTS—

¢.(t) is the probability that a given cell is active in the

inhibitory neighborhood of a cell in the population 0.

q.(t) is the probability that a given cell is active in the
; inhibitory neighborhood of a cell in the population 1.

Then:

4.2.1  qg(t) = pp(t).(1-v) ¢ py(t)y
Q(t) = Pgg(t).(1 =2 ¢ ppy(t).20(1 - ») + pgg(t).s?
©(t) = Ppgg(t).(1-v) + poy(t) . v
Qu(t) = pyg(t)v ¢ pyo(t).(1 - v)

wWriting B(n, fi m) = Co. g%t - f)™N,  where ,C, is the binomial

coefficient, we have immediately

4.2.2 ey(r) = ep(r) = B(r, qy(t);: E)
1g(r) = B(r, q,(t): 20 - 2)
tg(r) = B(r, q.(t): 20 - 2)

egq(r) = ego(r) = eqo(r) = B(r, qu(t): E)

The remaining i, are more difficult to obtain, since the inhibitory
contributions to cells lying off the solution plane come from cells
lying on the solution plane and from cells lying off the solution

plane, and these two populations obey different statistics. In fact
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4.2.3  dg(r) = [py(t)]2.B(r - 2, q,(t); 20 - 4) +
+2py(t).(1 = py(t)).B(r - 1, qu(t); 20 - 4) +
¢ (1 - pg(t)]2.B(r, q,(t): 20 - 4) |

igo(r) = [pg(t)]2.B(r - 2, q_(t): 2D - 4) +
+ 2pp(t).(1 = pp(t)).B(r - 1, q_(t): 20 - 4) +
¢ [1- pp(t)]2.B(r, a_(t): 2D - 4)

The final case typ 1is especially awkward, because along one of the
inhibitory lines the probability of a cell being "on" is ¢, and along

the other diagonal it is q_.

4.2.4  igp(r) = T {pg(t)B(k - 1, q,(t); D -2) +
(1 = py(t))B(R, qu(t); D - 2))
‘{po(t) .B(r-ket, q_(t); D - 2) +
(1 = po(t))B(r-k, q_(t); D - 2))

Ve now need to relate the p,(to!) and the p,(t) in terms of the e_ and

g
iy. For each cell population we know the distributions of incoming
excitation and inhibition, and we know that a cell will be on whenever

the excitations exceed the inhibitions by at least 8. Hence

t+1 t t
S N dly il p e (n) - i%(m)
. by n=o9tokE iy y
= 0 to 2D-2
‘ n-em2o
™

— S "'»:J
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where 0, r@~1 forwel, v~ 11
0, - 0 otherwise

If the input term Cg.y,d of eq. 1.1.1 is neglected, 8, = @ for all w.

"
The equations 4.2.6 are too complex to be solved analytically.
Numerical solutions were however obtained for various values of the

parameters and some of the results are given in table 1 and figure 8.

4.3 Range of parameter values and comparison with actua! runs

Figure 8 exhibits the performance of the algorithm for stereograms
having densities of from 0.5 to 0.05. Table 1 gives the statistics
that were measured from these runs, and also the parameters predicted
by the probabilistic theory. The values obtained from the theory match
those from the algorithm quite well for the first iteration, but except
for the case v = 0.05, they diverge quite rapidly thereafter, and even
this case diverges by the third iteration.

We have already noted the main reason for the discrepancy. The
assumption that the statistical structure of various populations is
purely random (inside each population and between populations) holds
exactly for the first iteration but only approximately thereafter,
because the operator of fig. 1c has a local structure which can
preserve local clucters of active cells. There are two ways in which
this affects our probabilistic description for the second and

subsequent iterations., The first is that clusters are more stable than
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8. The stereograms (Left, Right) and iterations tabulated in table 1.
Stereogram densities are 50% (8a), 25% (8b), 10% (8¢) and 5% (8d).
Parameters are as shown in table 1.
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the assumption of randomness would predict. Thus clusters forming on
the solution layer will in certain circumstances change the rate of
convergence predicted by the randomness assumption.

The difficulties arise where clusters form off the solution layer.
These will again tend to be more stable than our analysis assumes, but
their effect acts against convergence. However, we shall argue that
the probability of large "wrong" clusters is small for most patterns.
In fact, the typical value of the probability that a wrong cell is "on"
after the first iteration lies around 0.1. The probability (after the
first iteration) of a self-supporting 3 x 3 cluster at a given
position in a wrong layer (assuming that the cluster was absent in the
initial state and accepting the oversimplified assumption of randomness
after the first iteration) is about 10'9, and hence less than 10~ that
one exists off the solution plane somewhere in the network.

A cluster of this size may survive permanently, because every
element in it has at least 6 cells in its excitatory neighborhood, and
this is enough to resist 1 inhibition). The probability of this or
something larger arising by chance is so small that if it occurs it is
likely to be a consequence of the particular image. In fact, some
small "wrong" patches do sometimes occur (inspect Marr § Poggio 1970
fig. 5d) but such instances can usually be traced to an accidental
correlation in the image. In this sense, extended patches are
"correct" solution regions.

The second effect that leads to discrepancies between the theory

and the behavior of the algorithm is also a side-effect of clustering,
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since as well as being stable, the clusters tend to concentrate "on"
cells more than the randomness assumption would predict. For example,
at iteration 2 of the case y = 0.25 (fig. 8b), although the overall
density of ones on the solution plane is about 0.39, it is far from
true that each cell can expect to find 0.39€ "on" cells in its
excitatory neighborhood. Cells in the filled in regions have almost
all their neighbors on, whereas ﬁhose in the interstices have none.
Convergence is achieved by a growth outwards that fills in the blank
regions, but although it is steady, it is necessarily slower than the

theory predicts.

6 Observations

5.1 There is a wide latitude in the range of parameters for which the
network converges. Table 2 shows firstly the wide range in stereogram
density » that is tolerated by our parameters (with fixed #), and
secondly, for a fixed value of » (» = 0.5) gives some idea of the range
of the other parameter values for which the network will converge.

Note that in the implementation described by Marr § Poggio (1976), the
threshold was not fixed, but was determined by the density of "on"
cells in the network. This allowed solution to the matching problem

over a very wide range of dot densities.

5.2 Let us define the probability that a cell on the solution layer is
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TABLE 2. The algorithm of eq. 1.1.1 converges for a wide range of control
parameters. Tables 2a, b show convergence for v = 0.5 and v = 0.1 with
the same parameters. Table 2c shows convergence for an entirely different
set of parameters. h

2a. v=0.5,E=12,D=7,E=2,06=3.0

Iteration Py Pu Po Py " ‘Pgg Py Py
] % e s e W 0 0
2 P om0 e ciig 0 .54
3 80, -.039 . .99 . .39 .16 0 0
4 .97  .007 .935 1.0 0 0 .029
5 1.0 0 S 0 0 0

2b. v=0.1,E=12,D=7,E=2,06=3.0

et W B By B By Wy o Uy
1 EE e B 0 0
2 A e 0 0
3 RN e D G 0 0
a 86 rBisiBED W6 0 0 0
5 U e A T M 0 0

2c. v=0.5, E=2,D=7,E=0.5,06=1.0

Iteration Pr Py Po 6 e e ¢ A
| WY e T e 0 .010
2 SO B M e Rl .90
3 A W A e 0 006
4 R e - Uane Nt Gl (e .80
5 B O 00N L 0 .009
6 R - bt T SECI S G .66
7 PR U R T T
8 Oy U T T g 43
9 82 .02 .9 1N .05 .002 .02

10 94 027 .88 .99 O 0 N

n 995  .009 .996 .995 .001 O .03)
12 1.0 .004 1.0 1.0 0 0 .014
13 VR SN R ¥ 0 0 .007
14 1.0 0 0. W0 0 0 .003
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"on" at time t to be
Pp(t) = w.py(t) ¢ (1= »)py(t)

and the probability that a cell off the solution layer is on at time t

as

Pp(t) = VZ-Ptl(t) ¢ (1 = w)pgo(t) + (1~ yz)poo.

In a successful run, p, converges to 1 and p, to 0. With our
particular parameters, convergence is monotonic if it occurs. This is
not true, however, for the individual quantities p;. pp. Pyy. Pgo. Poo»
neither is it true of p,. and p, for all values of the parameters (see

table 2).

§.3 We have already seen that the sharpest local corner capable of
resisting 1 inhibitory input is about 90° or more, hence thin, sharp
regions will tend to be rounded off locally (see Marr & Poggio 197¢
fig. Sc). The exact shape of the input pattern is preserved only up to
this limit.

5.4 MNinimum size vs. disparity
A natural consequence of the structure of the algorithm is that
the minimum resolvable area of a small pattern against a background

increases with disparity (see Marr § Poggio 1976, fig. 6). We give an }
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9. The minimum resolvable area of a small pattern against a background
increases with disparity. To prevent the background from filling in
completely, the length of the patch in the x-direction aust be at least
d+ 2 (9a). 9b shows the circles of diameters 3, S and 7 used in
figure 6 of Marr & Poggio 1976.
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estimate of the dependence of minimum patch size on disparity
difference. Consider a section for some fixed y of the network (fig.
9). Assume that the patch and background regions are filled in. The
coﬁdition for growth at a point (x, y, d) under 1 inhibition is that
the number of "on" cells in an excitatory neighborhood should be not
less than 8 + ¢ - ¢? = & or 6, depending on the initial conditions.

From fig. 3 we see that flat or convex regions will not grow whereas

concave regions will. Hence our small patch will not tend to grow,
whereas the background will spread until stopped by two inhibitions.

We see from fig. 9a that to prevent the background from filling in
completely (which would subsequently destroy the patch because convex
borders cannot survive two inhibitions), the length of the patch in the
x direction must be at least d + 2. This condition must hold for at
least three adjacent lines aligned in the y direction. Fig. 6 of Marr
& Poggio (1976) illustrates the approximate validity of this relation.
Fig. 9b shows the sizes of circles of diameter 3, S, and 7 used in the

input for that figure. These precise patterns do not necessarily

emerge in the appropriate layer of the network because of the random
nature of the borders. The circle of diameter 3 contains no 3 x 3
subset and therefore does not survive at any disparities. The circle
of diameter S contains one 3 x 3 square and survives as expected at
disparity 1; it also survives, apparently accidentally, at disparity 2,
but not at disparity 3. The circle of diameter 7 contains one S x S
square and thus survives at disparity 3.

A trivial consequence of this analysis is that horizontal stripes
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(parallel to the x axis) are in general more stable than vertical ones
(parallel to the y axis). The minimum thickness for horizontal stripes
is about 3 and is independent of disparity whereas the minimum

thickness for vertical stripes is about d + 2 (see fig. 10).

$.5 Uncorrelated areas

If there exists a sufficiently large area in the input where there
is no correlation between the two images, the network will detect it
(see figs. 5 and 6 of Science). After the first iteration (with our
parameter values and » = 0.5) only a few cells remain "on" in the
uncorrelated region, but provided the region is sufficiently large they
will receive no inhibition from the surrounding more organized layers.
Hence those cells that are on may act as germs for small regions that
have become stable by the time the surround encroaches upon them, e.g.
fig. 5d of Marr § Poggio (1976). Relatively small (<< d) uncorrelated
areas probably have to develop stable platelets to survive (see fig. o0d
of Marr § Poggio 1976), and large uncorrelated areas decompose into a
random mosaic of stable platelets (see figure 11).

Uncorrelated areas can be recognized as such during the read-out
from the network, when the 1's that appear in the solution found by the
network are used to establish an explicit correspondence between the

two images.

5.6 Extension to images in which disparity varies continuously

The algorithm of eq. 1.1.f1 with the loading rules of eq. 2.1.1 can
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11. The central band is uncorrelated. It decomposes into a random
mosalc of patches, each of which is eventually stable.
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deal only with images having discrete disparity values. The disparity
in natural images commonly varies continuously. There are two
approaches to this problem. One is to incorporate the representation
of continuous values directly into the algorithm, and the other is to
use the same algorithm, but with special rules for loading it and for
interpreting its final state.

The first approach would clearly lead to a considerably diiferent
algorithm, perhaps more along the lines of the networks studied by
Wilson § Cowan (1973), (see also H. -R. Wilson 1977). Such an algorithm
could not be treated within the framework of this article.

The second approach does not require any changes in the analysis
of the algorithm itself. One could, for exampe, define the loading
conditions as follows:

Let A be the disparity attached to a possible correspondence

between items in the left and right images. For integral d,

5.6.1 If d-9n< A <d+yg load the cell corresponding to disparity

level d in the network.

For surfaces whose disparity does not oscillate too much or too
densely, the value 9 = 0.5 will lead to satisfactory results. The
final state of the network establishes a correspondence between jtems
in the left and right images, but their associated disparity is read
not from the network (i.e. d) but directly from the input (i.e. A).

Confusions may of course arise in the correspondence established by the
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network if the value of d spans the disparity range too coarsely.
In order to deal with surfaces that are less well-behaved, one can
xncorpgrate some hysteresis into the loading rules. The loading

process then consists of the following steps:
5.6.2 Load cells according to §.6.1 with 9y = 0.3 (say).

§.6.3 Moving across the image (x, y) in a spatially ordered way, if
possible match (x, y, 4) was not loaded by §.6.2, adopt the following
procedure:
Let d~ = Integral part of A, d* - 1 + d". Examine (x, y)
neighborhoods of (x, y, d°) and of (x, y, d*) in the network as it
is loaded so far. Assign the current match to that d whose
neighborhood contains more loaded cells, if one of them does. Else

load this point according to 6.6.1 with 9 = 0.5.
This process will load most images in satisfactory way, and the
read-out procedure is similar to that of the previous case.
6 A mathematioally tractable version of the algorithm
A suitable choice of the parameter values and of the loading rules

of the algorithm allows a complete mathematical analysis of its

asymptotic behavior. In this section we introduce this "strict"

I T S R A




Cooperative computation 42 Marr, Palm § Poggio

version of the algorithm and we characterize rigorously its properties.
The actual performance of this version of the algorithm for various
random dot stereograms will be then compared with the original

algorithm.

6.1 Lloading conrditions

The initial state C? of the network is loaded from the stereograms
L., R in a way similar to the previous case but according to eq. 6.1.1
(instead of eq. 2.1.1).

6.1.1 C

-

Ly ,y-Pxed,y
\\‘here 1ol=0.0=1, 1.0'0.1‘0.

(o]
X, y:d

This loading rule can be easily estended to cases in which more than

two features are present. It is enough to define
6.1.2 fi.fj-f&ij.
where f; and f;. (i # j) are two different features. The case when

only two features are present clearly poses the hardest matching

problem. We shall later compare this loading rule with the original

eq. 2.1.1 and discuss their relative merits for real images.
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6.2 The algorithm
The relation betwen states at times t and t¢f is given by (compare

eq. 1.1.1)

t+1 ¥ t t
6.2.2 cx.y;d Oliﬂf[ Z cxl.yl;da ’ H LA z Cx',y",d'
x',y',d'eS(x,y,d) x',y',d'e0(x,y,d)

where H is a number that represents the "saturation” value for the

excitation.

6.3 Choice of parameter values

In this case the loading rules lead, for random dot stereograms
with two features, to a density of 1 for the "on" cells on the
"correct" diagonal segments and, correspondingly, to a density of
v2 + (1 - v)2 for the "on" cells on the "wrong" diagonal segments (v is
the density of 1's in the input images). When y = 0.5, the density of
the wrong cells is also 0.5; for smaller or larger » the density is
higher. The idea behind this approach is to choose parameter values
for the first iteration that "kill" most of the "wrong" cells (and of
course some of the "right" ones); from the second iteration on, the
parameter values are such to ensure "filling-in" of the right diagonal

segments, allowing, at the same time, a satisfactory mathematical

analysis of the evolution of the network's state. This approach, which

is carried out in the next two sections, leads to the following

parameter values:

S U -
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6.3.1 S and 0 are as in fig. 2, D = 7 and N = S as before. Self-
excitation is now included but the c? term is omitted. WQ therefore

write £ = 13 instead of 12.

6.3.2 - Iteration 1.
H = 13 (so that the iaf operation can be neglected)
¢ = 0.2
0 = 10.75

6.3.3 Second and subsequent iterations.
=7
¢ =4,0
8 = 3.5

6.4 Probabilistic analysis of the first iteration

We shall assume that the inputs have the properties 4.1.1 and
4.1.2. As in section 4.1, we distinguish several populations of cells
which are homogeneous with respect to the interaction structure: the
populations are again denoted by 0, 1, 11, 10, 00 according to their
respective inputs from the two images (see section 2), and py, py, etc.
denote the probability that a cell in the respective population is "on"
after the first iteration. In this case the formulae for the solution

layer are:

= S w2 10 SR AR A 2B X
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13-6
€

P ’igo 12Ct.l't(1 - V)lz-i

13-0
P ~+ z 12C¢-(1 - V)i.vlz-i
i=0

For the "wrong" layers (writing u = e (1 - v)z). the formulae are

kel=

12 P : .

Ko \12-K i 10-

P11 < > ]2Ck wo(1-u) 3 10Ck v (1-v) 0-i
k=0 i=0
k+1-0

12 k. oMok 8 5 i 10-i

PROLTE e i L. R T S U

k=0. i=¢

- inf (!‘-;ﬁ- -2),5  inf (X2 -2)-1,5
P Sl LR Lo TR i e B

k=0 i=0 j:o

Therefore the probability that a cell in the solution layer is
"on" after the first step is
Pr = pg.v ¢ pg.(1 =)
and the probability that a cell off the solution layer is "on" after
the first step is
P = ¥2Pgg ¢+ (1 = »)pgg + (1 = W) pgp.

These equations can be used to find suitable parameter values. The

parameters given in the previous section yield the values for p, and p,
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shown in table 3.

6.5 Equivalent rules

The parameter values from the second iteration on imply the

following main "rules" for the algorithm:

6.5.1 one "on" cell in the inhibitory neighborhood always suffices

kill an "on" cell

6.5.2 without inhibition, at least three excitatory "on" cells are

needed for "survival" of an "on" cell and four for its "birth".

6.6 Analysis of the second iteration

Table 3 glves-the densities p, and p, after the first iteration.
Only for the first iteration can a probabilistic analysis provide a
reliable estimate of the density of "on" cells on the solution surface.
As in our earlier analysis (table 1), it becomes unreliable for the
second iteration, because clusters of "on" cells can be expected to
form in the solution layer (see figure 14 below). Rule 6.5.1 implies,
however, that "wrong" clusters will disappear after the second
iteration, unless they consist of at least four elements. Moreover,
these elements must in practise be very close together for each to
support the other three. In addition, according to rule 6.5.2, none of

them can lie in the inhibitory neighborhood of other “on" cells (for




3a. v=0.5,E=13,0=7

TABLE 3. The behavior of the mathematically tractable of the algorithm,
together with the probabilistic theory of the first iteration,
for the two stereograms exhibited in figures 14a and b.

X € 8 H Iteration P, P ij P, Poo P10 P ey
0.2 10.75 13.0 1 .9998 .0017 .9998 .9993 .0023 .0011  .0023 Theory
el 1 _.99 .0003 _ .99 .98 .0008 0 .0004 Algorithm
4.0 3.75 7.0 2 .99 0 .99 .99 0 0 IR, hess B
3 1.0 g 1.0 1.0 0 (4] 0 G
3b. v=0.2,E=13,D=7
¢ g % Vemthe B Pu Po Py Pl P10 P s
0.2 10.75 13.0 1 .976 .0078 .968 1.0 .0039 .0015 .082 Theor{/
1 .96 .0002 .95 1.0 .002 .0003 .002 Algorithm
4.0 3.5 7.0 2 .98 0 .98 .97 0 0 0
3 1.0 0 1.0 1.0 0 0 0 (e ait
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instance on the solution layer where the density of on cells is
relatively high, see table 3). We argue that the probability of such
situations is very small (actually much smaller than in the case
considered in section 4.4). If this occurs it can be attributed to an
accidental correlation in the images. In this sense extended clusters

are in fact "right" solution regions.

6.7 Asymptotic analysis

The probabilistic analysis of the first iteration (table 3) shows
that one can assume that, from the second iteration onwards, there are
no wrong "on" cells. It remains now to show that the density of "on"
cells on the solution layer is high enough to allow asymptotic filling-

in of the "right" surfaces. We prove the following:

6.7.1 Filling-in Proposition. Assume that (at some iteration m)
there are no "on" cells off a given layer (diagonal), and that the
density of "on" cells on this layer exceeds 0.4375 = 7/16. Then,
in the asymptotic configuration, there are no "off" cells on this
layer.
Proof: Divide the solution plane into squares of 4 by 4 cells (we
neglect boundaries). At least one of these squares must contain 8 "on"
cells, for, otherwise, every square would contain at most 7 "on" cells
yielding a density of at most 7/16, in contradiction with the
hypothesis. This square will fill up with "on" cells. (This can be

e e e va—
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seen by examining the various possible ways in which the 8 cells can be
distributed, and we leave it as an exercise for the reader). Starting
from this square, the whole plane will asymptotically be filled by "on"

cells (since, by hypothesis, no inhibitory cells need be considered).

6.8 Invariant states and matching rules
The matching rules were defined in section 3. States that satisfy

the matching rules with the present parameter values are shown in fig.
12. In view of the rules 6.5.1 and 6.6.2, the following clearly hold:

i) Configurations that satisfy the matching rules (fig. 12) are
invariant.
ii) Conversely, invariant configurations cleariy have to obey the
uniqueness condition (because of 6.6.1). The probabilistic analysis of
the second step, together with the "filling-in" proposition 6.7.1,
ensures in practise that there will be no holes? in the asymptotic

invariant configurations.

6.9 Asymptotic Liapunov description

Besides the invariant asymptotic configuration, limit cycles of
the type described in figure 13 may also occur. Thus the previous
description of asymptotic invariant states is nut complete. We provide
here an asymptotic analysis in terms of a Liapunov-like function which
also encompasses such non-invariant states.

For a given state C!, we define F(C!) to be the number of "on"




; 12. With the modified parameters, cells cannot survive against one
inhibition. Hence stable states satisfy the uniqueness condition,
because no overlap is possible (compare figure 5).
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cells having no "on" cells in their inhibitory neighborhood. We call
an "on" cell that has less than three "on" cells in its excitatory
neighborhood a "solitary cell". Observe that solitary cells can never
be "born" and that, after a finite number of iterations, all solitary
cells will have disappeared.

6.9.1 Growth proposition. After a finite number of iterations, the

function i ---»> F(cl) is non-decreasing.
Proof: After a finite number of iterations i, all solitary cells have
died out. Let us consider the transition from C! to C!*{. If a new
cell is born, rule 6.5.1 implies th;t it cannot lie in the inhibitory
neighborhood of an already present "on" cell. Thus F will not decrease
(from C! to ci*1), If a cell dies out, it cannot be a solitary cell.
Therefore it must have had an "on" cell in its inhibitory neighborhood

at iteration i. Thus F will not decrease.
The growth of F adequately describes the filling-in process,
respecting at the same time the "uniqueness" matching rule.

The growth proposition implies that:

6.9.2 For any initial configuration ¢% the limit Lim F(Cl) = F(C)

exists (since F is bounded above by the number of cells in one layer).
6.9.3 After a finite number of iterations, F(C!) remains constant.

Thus the asymptotic behavior of the system is characterized by the
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13. An oscillating solution with the modified parameters. The state
13a occurs at iterations t, t+2, i{+4, ..., whereas state 13b occurs at
iterations te1, 1e3, 1e6, ...
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following: Apart from invariant solutions, only those cycles can
(asymptotically) occur for which F remains constant. This is a strong
restriction on the possible asymptotic oscillatory states, for it means
that they have to be of the type shown in fig. 13. The growth
proposition by itself does not exclude for instance the "zero"
invariant state. The probabilistic analysis of the second step of the
algorithm together with the "filling-in" proposition ensures, however,
that invariant states as well as limit cycles will in practice have no

"holes".

6.10 Observations

6.10.1 Figure 14 shows the performance of the algorithm in this form
for a few different patterns and pattern densities. A comparison with
figure 8 reveals that the type of "strategy" for achleving a successful
matching is different: Firstly, wrong cells are drastically eliminated
at the expense of losing many right cells, and then filling-in of the
surviving surfaces takes place. This contrasts with the more
complicated "strategy" revealed in figs. 3 - 6 of Marr § Poggio 1976.
It is remarkable how, while the basic structure of the algorithm
remains the same, a change of parameter values and loading conditions

can bring about so deep a change in the algorithm's behavior.

G.10.2 Because of the rules of the present algorithm, especially rule
6.5.1, the sharpest corner capable of surviving (of course under no

inhibitions) is limited only by the need for an "on" cell to have at
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14. The behavior of the algorithm with modified parameters. The
densities are S0% (14a) and 25% (14b). The parameters are as stated in
section 6.3, and in table 3. 14c compares the two sets of parameters
on a stereogram of a star that contains arms of various angles. The
original parameters tend to give a more accurate final configuration.
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least three excitatory neighboring cells. This allows a 45 degree

corner.

6.10.3 Minimum size vs. disparity. Again because of rule 6.6.1, the
minimum resolvable area of a small pattern against a background does
not depend on disparity. It is given by the minimum self-supporting
configuration (four adjacent cells, from rule 6.5.2).

This contrasts sharply with the property discussed in section 6.4,

where the minimum size has a characteristic dependence on disparity.

6.10.4 Loading conditions. While the present loading rule is

characterized by

6.10.4.1 JiJj = 8;j where f; is a feature and §;; is the
Kronecker §,

the previous loading rule (section 2) can also be characterized by

equation 6.1.2, with the convention that §;; is also zero when either i

or j are zero. In other words the "null" feature has a special status

JoJj = JiJp = 0. all ).

In case of two-valued (0,1) random dot stereograms, the choice of
either one of the two loading rules is somewhat arbitrary. For
densities around 0.5, the straight equation 6.10.4.1 seems to make more
sense, since the black and white dots play equivalent roles. This is
not clear, however, at very low densities (nor at very high ones).

In the case of natural images, more than two feature types have to

be used (for instance, lines and edges at various orientations). In

f
r:;nrr...g":.._;:z.d



Cooperative computation 58 Marr, Palm § Poggio

this case, however, not every point is labelled with a corresponding
feature; the absence of any feature at a given point is a common event.
The null feature seems to have a basically different role from the
other features. These arguments clearly support the loading conditions
used in the first part of the paper (see Marr & Poggio 1976). It is
clear, on the other hand, that both loading conditions may work. For
both, an increasing number of "feature types" implies of course an
increasingly better algorithm convergence. The choice between them
depends in the end on the typical feature densities that one wants to
deal with. For natural images, quantitative estimates have only

recently become possible (Marr 1976, 1977).

7 Discussion

7.1 Alternative algorithms

The algorithm eq. 1.1.1 can be modified in various ways. One can
adopt alternative loading rules for the network as in section 6, and
one can vary the parameters over a substantial range. Such apparently
minor changes can cause considerable changes in the network's behavior,
but often without changing the end result (see for instance section 6),
because they still implement the same computational constraints.

If the geometry of the local interactions (i.e. the shape of the
excitatory and inhibitory neighborhoods) is changed, the network will

in general implement a different computation, because the local

e L e el e e 6 L




Cooperative computation 59 Marr, Palm § Poggio

constraints will have changed. If only the parameter values are
changed, our analysis (section 3) may still apply. If the geometry is
changed, our analysis will in general become irrelevant.

Interestingly, for a specific stereogram density, a non-iterative
version of our algorithm can recover disparity satisfactorily (see fig.
14a iteration 1). John Fairfield (personal communication) suggested an
algorithm in whicﬁ (1) excitation is summed independently within each
disparity layer, and (2) for each position, one selects only the most
excited of the cells in the different disparity layers. This algorithm

performs well for the case » = 0.5.

7.2 Comments on analyzing such operations

We find the style of analysis that we were forced to adopt to be
unsatisfactory for a number of reasons. Firstly, although our
arguments appear to provide a qualitatively accurate description of the
algorithms's behavior, the arguments are not completely rigorous. The
main reasons for this lie in the difficulty of assessing the validity

of the randomness assumptions that are necessary for the probabilistic

analysis; and, to a lesser extent, in the need to examine a number of
special cases in order to establish the stability of various solutions.

Secondly, our analysis is very specific to the particular
algorithm and the particular parameters. This style of proof cannot
lead to any general results about the convergence of such operators.

In order to overcome the first of these problems one can follow
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i the approach of section 6. The price one pays is that the analysis is
valid for a narrower parameter range, which happens not to include the
original parameter vaiues (see Marr § Poggio 1976). The difficulty
with the assumption of randomness arises because of the constant

spatial structure of the operator £ (eq. (1) and fig. 2c of Marr §

Poggio 1976). It should perhaps be noted that this objection does not
apply to the similar analysis given by Marr (1971) of a cooperative
associative memory algorithr because there the local operator had a

variable and essentially random structure.

The second of these difficulties seems to be inherent in the
nature of this type of cooperative algorithm. No general approach is
at present available. Standard apbroaches4 that we have tried have

failed up to now. The flavor of the difficulties is the following. A

configuration that is stable may be perturbed by changing a large
number of cells without affecting its asymptotic state, provided that
the perturbed cells are well scattered and interior. On the other
hand, one fixed point of the algorithm can be shifted into another by
perturbing only a few cells, provided that they have a suitable
configuration. Thus, the usual distance between two configurations,
némely the number of cells having different states, does not reflect
the behavior of the algorithm. Therefore, the problem seems to be how
to incorporate the geometry of the interactions into the metric
distance between configurations.

It seems unlikely that one can construct a useful general theory

of algorithms of the form
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k 7.2.1 ¢l = gfiLccM)),

where L is a linear operator on the vector C, and ¢ is a nonlinear

(coordinate-wise) function. J. H. Conway's game "Life" can, for

example, be written this way (see fig. 15) and with an appropriate
input pattern is Turing universal (unpublished result discovered
independently by J. H. Conway and R. W. Gosper).

This suggests that theories of this type of algorithm must take
due account of the structure of the input data and will probably be

restricted to very specific forms of eq. 7.2.1.

A mathematical understanding of the behavior of eq. 7.2.7 would

represent a breakthrough of rather general importance. Cooperative

phenomena similar to those which can be described by eq. 7.2.1 are
important in physics (Haken 1977, Kawasaki 1972, K. G. Wilson 1975), in
development (Mostow 1975), and in biology (Eigen 1971, Marr 1971,
Richter 1970).

Furthermore, such a theory might also allow one to synthesize in a
standard way cooperative algorithms of the form of eq. 7.2.1 from an

analysis of the constraints on a computation.
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1S. Conway's game "life,” which is played on an infinite plane square
lattice, may be represented in a manner very similar to that of our
stereo operator. The excitatory neighborhood, together with
appropriate weights, is shown in 15a, and the threshold function
appears in 15b. This combination reproduces the rules of life exactly,
and these are; ‘

(1) A cell will die at generation a¢f if ¢ 2 or > 3 of its 8 neighbors
are alive at generation a (death by starvation or overfeeding).

(2) A cell with exactly 2 1iving neighbors at generation a» will be
alive at generation a+1 if and only if it is alive at generation a.

(3) A cell with exactly 3 living neighbors at generation a will be
alive at generation a¢i.
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Footnotes

1. In Marr. § Poggio (1976), the value of # was given as 3.0, whereas
here it is 4.0. The reason for the discrepancy is that the algorithm
used to produce the stereograms for that article essentially used the

condition > @, whereas here, we use the condition 2 #.

2. A configuration is "spatially stable" if it is in some sense
invariant under small perturbations (for instance each active point can
be required to belong to a 3 x 3 neighborhood of points with the same

disparity).

3. There is a hole in the network for a given y if there exist two

intersecting lines of sight neither of which contains an "on" cell.

4. The continuous version of the algerithm eq. 1.1.1 cannot be
described in terms of a potential dynamics. In fact the dynamical

system

ot el St >
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C = ofEC}) -C = f(C) {¢ & "smooth" threshold)
does not admit a scalar potential function V(C) such that
[f(C)’x.y;d s aV(C)/ac,.,,,.
A necessary condition for this to be true is that
3

= f o (C) = i
aCX’y;d X'y d acxa’yu.’d:

fxyd(g), all x,y,d,x',y',d'

This is not true in general, because of the nonlinearity ¢ (consider
the case in which xyd and x'y’'d’ are on the same disparity layer and

are reciprocally excitatory).
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